Multiple functionally redundant signals mediate targeting to the apicoplast in the apicomplexan parasite Toxoplasma gondii.
نویسندگان
چکیده
Most species of the protozoan phylum Apicomplexa harbor an endosymbiotic organelle--the apicoplast--acquired when an ancestral parasite engulfed a eukaryotic plastid-containing alga. Several hundred proteins are encoded in the parasite nucleus and are posttranslationally targeted to the apicoplast by a distinctive bipartite signal. The N-terminal 20 to 30 amino acids of nucleus-encoded apicoplast targeted proteins function as a classical signal sequence, mediating entry into the secretory pathway. Cleavage of the signal sequence exposes a transit peptide of variable length (50 to 200 amino acids) that is required for directing proteins to the apicoplast. Although these peptides are enriched in basic amino acids, their structural and functional characteristics are not well understood, which hampers the identification of apicoplast proteins that may constitute novel chemotherapeutic targets. To identify functional domains for a model apicoplast transit peptide, we generated more than 80 deletions and mutations throughout the transit peptide of Toxoplasma gondii ferredoxin NADP+ reductase (TgFNR) and examined the ability of these altered transit peptides to mediate proper targeting and processing of a fluorescent protein reporter. These studies revealed the presence of numerous functional domains. Processing can take place at multiple sites in the protein sequence and may occur outside of the apicoplast lumen. The TgFNR transit peptide contains at least two independent and functionally redundant targeting signals, each of which contains a subdomain that is required for release from or proper sorting within the endoplasmic reticulum. Certain deletion constructs traffic to multiple locations, including the apicoplast periphery, the rhoptries, and the parasitophorous vacuole, suggesting a common thread for targeting to these specialized compartments.
منابع مشابه
Two essential Thioredoxins mediate apicoplast biogenesis, protein import, and gene expression in Toxoplasma gondii
Apicomplexan parasites are global killers, being the causative agents of diseases like toxoplasmosis and malaria. These parasites are known to be hypersensitive to redox imbalance, yet little is understood about the cellular roles of their various redox regulators. The apicoplast, an essential plastid organelle, is a verified apicomplexan drug target. Nuclear-encoded apicoplast proteins traffic...
متن کاملA first - in - class inhibitor of apicomplexan FtsH 1 disrupts plastid biogenesis in 1 human pathogens
13 The malaria parasite Plasmodium falciparum and related apicomplexan pathogens 14 contain an essential plastid organelle, the apicoplast, which is a key anti-parasitic 15 target. Apicoplast biogenesis depends on novel, but largely cryptic, mechanisms for 16 protein/lipid import and organelle inheritance during parasite replication. These 17 critical pathways present untapped opportunities to ...
متن کاملPhosphatidylinositol 3-Monophosphate Is Involved in Toxoplasma Apicoplast Biogenesis
Apicomplexan parasites cause devastating diseases including malaria and toxoplasmosis. They harbour a plastid-like, non-photosynthetic organelle of algal origin, the apicoplast, which fulfils critical functions for parasite survival. Because of its essential and original metabolic pathways, the apicoplast has become a target for the development of new anti-apicomplexan drugs. Here we show that ...
متن کاملSubcellular localization of acetyl-CoA carboxylase in the apicomplexan parasite Toxoplasma gondii.
Apicomplexan parasites such as Toxoplasma gondii contain a primitive plastid, the apicoplast, whose genome consists of a 35-kb circular DNA related to the plastid DNA of plants. Plants synthesize fatty acids in their plastids. The first committed step in fatty acid synthesis is catalyzed by acetyl-CoA carboxylase (ACC). This enzyme is encoded in the nucleus, synthesized in the cytosol, and tran...
متن کاملComparative Analysis of Apicoplast-Targeted Protein Extension Lengths in Apicomplexan Parasites
In general, the mechanism of protein translocation through the apicoplast membrane requires a specific extension of a functionally important region of the apicoplast-targeted proteins. The corresponding signal peptides were detected in many apicomplexans but not in the majority of apicoplast-targeted proteins in Toxoplasma gondii. In T. gondii signal peptides are either much diverged or their e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eukaryotic cell
دوره 3 3 شماره
صفحات -
تاریخ انتشار 2004